NASA'S INTEGRATED SPACE TRANSPORTATION PLAN

Harry Cikanek National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio

Integrated Space Transportation Plan: A National Plan

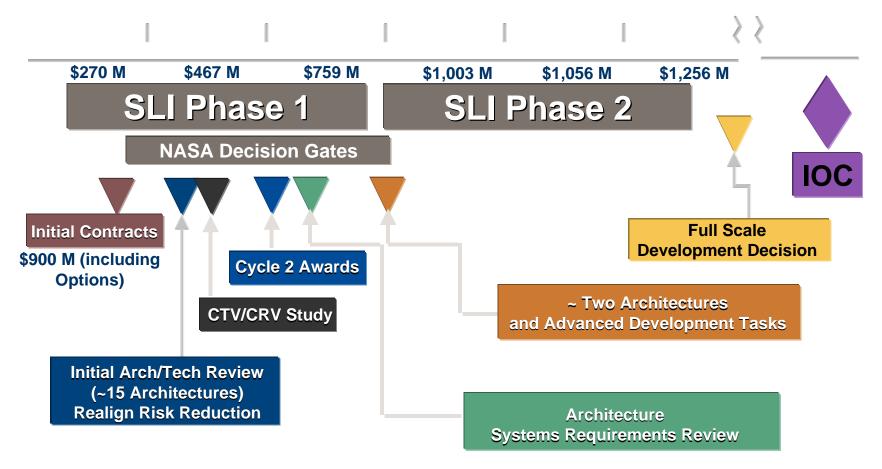
Space Shuttle Safety Upgrades


Space Launch Initiative

- 2nd Generation RLV Risk Reduction
- NASA Unique Systems
- Alternate Access to the ISS

3rd Generation RLV and In-**Space Research and Technology**

NASA's Long-Term Investment Strategy to Increase the Safety, Reliability and Reduce the Cost of Space Access



SLI Program Schedule

Mid-Decade: Full-Scale Development Decision

 Early Next Decade: Initial Operational Capability

Technology Linked To Architecture Needs

Structure

- Propellant Tanks-
- Stage Attach & Thrust Structures -
- Composite Wings

IVHM

 Reliability enhancements resulting from IVHM implementation

Control System

 Electro-Mechanical Actuators

Main Engine

Propulsion

- Kerosene / LO2
 Booster Engines
- LH2 / LO2 Engines

Avionics

- Fault Tolerant Autonomous Avionics
- Adaptive GN&C

Electrical Power

- Proton Exchange Membrane (PEM) Fuel Cells
- High Voltage Dist.
- APUs

Jet Back Propulsion

Jet Back Engine Integration

Landing Systems

Landing Gear – Tires & Brakes

TPS

- ACC Nose Cap & Wing Leading Edges
- Conformal Reusable Insulation (CRI)
- Reusable Cryogenic Insulation

OMS/RCS

- "Non-Toxic" Propellants
- Propellant Management Devices

Air Breathing Hypersonics

Applications and Benefits

Hypersonic Cruiser

Mid-Term
Next Decade

Reusable Launch Vehicles

Long-TermDecade after Next

Hypersonic Missiles

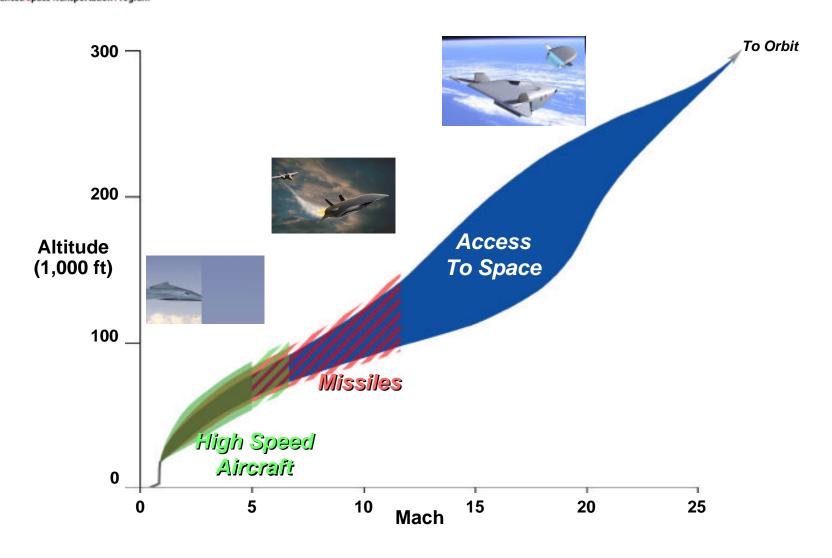
Near-Term *This Decade*

Large 3rd Generation RLV Design Space

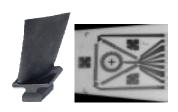
Horizontal Take-Off SSTO

Vertical Take-Off SSTO

- Over 30 concepts (primarily using airbreathing propulsion)
- Selected by aerospace community (NASA, DOD, Industry)
- Probabilistic systems analysis for key technologies


Horizontal Take-Off TSTO

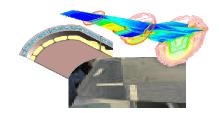
Vertical Take-Off TSTO


Representative Flight Corridors

Air Breathing Hypersonic Flight

Technologies and Systems Analysis

Propulsion Research and Technology Project


Rotating Components and Seals Flowpath Components Engineering Capabilities

Systems Analysis Project

Requirements
Synthesis
Analysis and Assessment

Airframe Research and Technology Project

Integrated Airframe Design
Integrated Thermal Structures
Thermal Protection
Aerothermodynamics
Propulsion Airframe Integration

Propulsion Ground Demonstrations

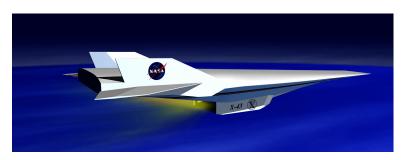
Rocket Based Combined Cycle Ground Demonstration (ISTAR)

Demonstration of a Rocket Based Combined Cycle Engine *System* Testing in 2006-8 Aerojet, Rocketdyne, P&W Consortium (RBC³)

Pursing Parallel Paths

Turbine Based Combined Cycle Ground Demonstration (RTA)

Development and test of a High Speed Turbine Engine


Primary element of a Turbine Based Combined Cycle Engine

Testing in 2006-8

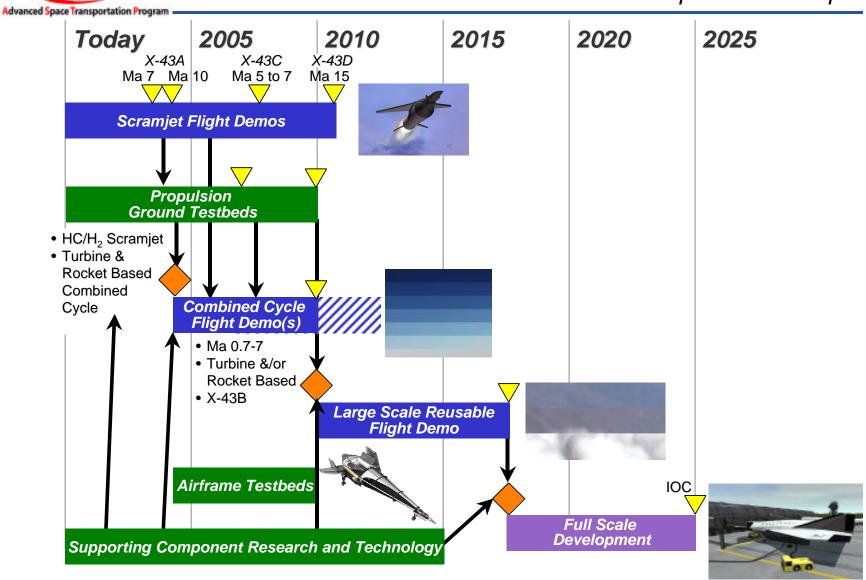
General Electric selected in July, 2002

Propulsion Flight Demonstrations

X-43A Flight Demonstrator

Flight validation of a Ma 7 and 10 Hydrogen Ram/Scramjet 2nd Flight in late 2003 (Ma 7) 3rd Flight TBD (Ma 10) Microcraft/Boeing Team

Validation of A Key
Element of Any
Airbreathing Propulsion
System


X-43C Flight Demonstrator

Flight validation of the USAF HyTECH Hydrocarbon Ram/Scramjet (Ma 5 – 7) Integrated with vehicle Flights in 2007-8 Contractor selection in mid-2003

Air Breathing Hypersonics

Access to Space Roadmap

Propulsion R&T Project Objectives

FY06 Data Products for Vision Propulsion Design

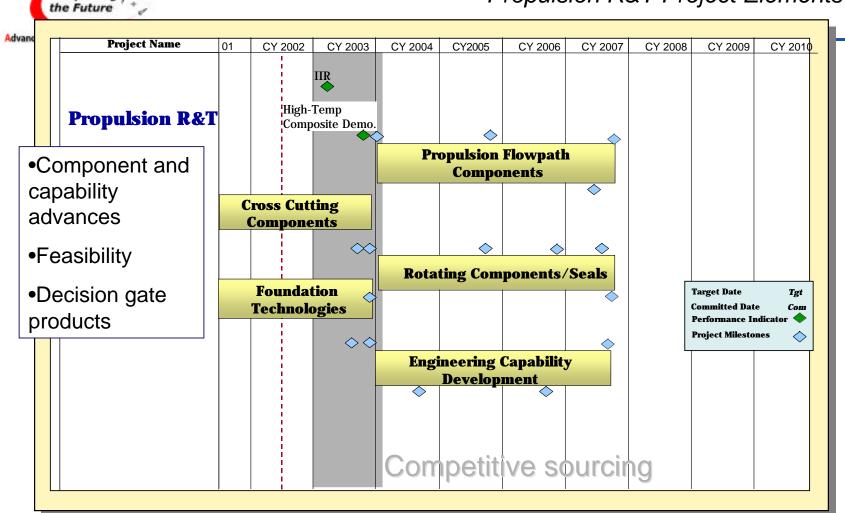
- Technology and Design Advancement
- Feasibility information

Data that feeds FY06 Program Decision Gate(s)

- Input for Build 2 definition for Ground Based Demonstrators
- Identification of technology insertions to flight demonstrators
- Information for update of program goals, requirements, and vision system design

06 Deliverables

- Actively cooled panels characterization
- Rotating component materials
- High temperature seals
- Instrumentation



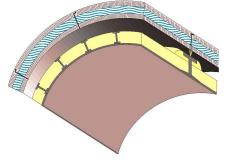
Propulsion R&T Project Elements

Project Overview

Airframe project goal

 Advance airframe technology providing reduced cost and increased safety through increased performance margin and reusability

Performance margin and reusability will be increased by focusing efforts on airframe technical challenges such as


- Composite tanks
- Light weight control surfaces
- Hot structures
- TPS
- Boundary layer transition
- Transonics
- Design and analysis tools
- Sharp leading edges
- Dynamic seals
- Health monitoring

Customer driven objectives

- Increased weight margin
- Increased combined loads margin
 - Thermal
 - Structural
 - Acoustic
 - Aero/aerothermo
- Increased operational margin

Airframe Project Tasks

Integrated Airframe Design

- Airframe Health Monitoring
- Analysis and Design Tools

Integrated Thermal Structures and Materials

- PMC Constituents and Processes
- Metallic Hot Structures for Airframe
- CMC Constituents and Processes
- Integrated Airframe Structure Development

Thermal Protection Systems

- Ceramic Acreage TPS
- Refractory Composite Leading Edges
- Advanced Control Surface Seals

Aerothermodynamics

- Rapid Aerothermodynamic Environment Definition
- Essential Aerothermodynamic Technologies

Propulsion Airframe Integration

- Scramjet Flowpath Development and Aero-Propulsive Interaction
- Airframe/Propulsion Aerothermodynamic Technologies

Hypersonics University Research and Engineering Technology Institutes

URETIs were awarded in August to University of Florida and University of Maryland consortiums

University of Florida

- Principal Investigator: Dr. Wei Shyy
- University Partners
 - Mississippi State University
 - Cornell University
 - Georgia Institute of Technology
 - Syracuse University
 - North Carolina A&T State University
 - Prairie View A&M University
- Propulsion Technologies
- Airframe Technologies
- Vehicle Life Prediction and Health Management
- Systems Integration & Design Optimization
- Educational Program Plan

- Principal Investigator: Dr. Mark Lewis
- University Partners
 - University of Michigan
 - University of Washington
 - North Carolina A&T State University
 - Johns Hopkins University (APL):
- Mission Analysis
- Cost and Reliability Analysis
- Propulsion
- Aerodynamics/Configuration
- Structures and Materials
- Education Program Plan

The NASA/USAF

X-43C

Propulsion System - Structural Architecture

- Hot Seals for the Propulsion Flowpath
 - -Static
 - Dynamic

Airframe - Structural Architecture

- Airframe and Control Surface Seals
 - -Static
 - Dynamic